开关电源原理

百燕之家 / 信息详情

谁有输出12V6000A的开关电源原理图,分享一下,谢谢

太强大了,焊接电源也没见过这么大电流的,

开关电源原理图(深入理解电力转换和控制技术)

在电力转换和控制技术中,开关电源是一种常用的电源类型。它通过开关管的开关控制,将输入电源的直流电转换成需要的输出电压、电流。下面我们来深入理解开关电源的原理和操作步骤。开关电源的原理开关电源的核心是开关管,它的工作原理是通过开关管的导通和截止,控制电源输出的电压和电流。开关管一般采用场效应管或双极型晶体管,它们具有导通电阻小、反向漏电流小等优点。开关电源的工作过程如下:1.输入电源经过整流电路,转换成直流电。2.直流电经过滤波电路,去除高频噪声和杂波。3.直流电经过开关管控制电路,控制开关管的导通和截止,从而控制输出电压和电流。4.输出电压和电流经过输出滤波电路,去除高频噪声和杂波,得到稳定的输出电压和电流。开关电源的操作步骤开关电源的操作步骤如下:1.连接输入电源:将交流电源连接到开关电源的输入端,注意输入电压和电流的规格要与开关电源的要求相符。2.连接输出负载:将需要供电的负载连接到开关电源的输出端,注意输出电压和电流的规格要与负载的要求相符。3.打开开关电源:按下开关电源的开关,使其开始工作。此时,开关电源会自动进行启动和保护,确保输出电压和电流的稳定和安全。4.调节输出电压和电流:通过开关电源的调节旋钮或按键,可以调节输出电压和电流的大小。需要注意的是,调节时要遵循安全操作规程,避免对负载和开关电源造成损害。

高频开关电源原理

高频开关电源是一种高效、稳定、可靠的电源供应技术,其原理是利用高频开关电路将输入电源转换为高频交流电,再通过变压器进行变换,最终得到所需的输出电压和电流。高频开关电源的优点相比传统的线性电源,高频开关电源具有以下优点:1.高效:高频开关电源采用开关管进行开关操作,可以在短时间内完成电源转换,从而提高转换效率,节省能源。2.稳定:高频开关电源采用反馈控制技术,可以对输出电压和电流进行精确控制,从而保证电源输出的稳定性。3.可靠:高频开关电源采用模块化设计,可以对电源进行模块化组合,从而提高电源的可靠性和维修性。高频开关电源的操作步骤高频开关电源的操作步骤如下:1.输入电源:将电源插头插入电源插座,将电源线连接到电源输入端。2.电源开关:打开电源开关,此时电源指示灯亮起,表示电源已经开启。3.输出电压调节:根据需要,通过电源面板上的电压调节旋钮,调节输出电压,调节范围根据不同型号的电源而定。4.输出电流调节:根据需要,通过电源面板上的电流调节旋钮,调节输出电流,调节范围根据不同型号的电源而定。5.输出电压和电流显示:通过电源面板上的电压和电流显示器,可以实时显示电源输出的电压和电流。6.关闭电源:当不需要使用电源时,先将输出电流和电压调节旋钮调至最小值,然后关闭电源开关,最后拔掉电源线。

开关电源原理怎样实现宽频电压工作

把交流通过二极管整流.电容滤波变成直流,再通过1620KHz左右高频振荡发生器 . 开关管和 高频开关变压器的作用,把直流转换成所需要的振幅高频脉冲电压。最后再通过高频二极把这高频脉冲电压整流.电容滤波输出所需要的直流电压。输出的稳压是靠在输出端取出取样电压去调整振荡器的频率和脉冲占空比。从而实现自动调整高频脉冲电压占空比最终达到输出直流电压的稳定.调整输出直流电压原理也一样,用人为的方法去改变振荡频率和脉冲占空耒实现改变输出直流电压目的。 简单说开关电源的基本原理就是:交流变直流再变脉冲电压又再变直流的一个过程。它具有稳压精度高,省耗小等特点。

开关电源原理是什么?热水器用开关电源会更好吗?

应该是控制电路需要把市电转换成控制电路需要的电压,是不是开关电源影响不大。

uc3842开关电源原理与维修

3842开关电源维修,主要是检查3842有没有损坏,检查8脚有没有5伏电压,7脚有没有大于12伏的波动电压,功率管有没有击穿,电流检测电阻有没有损坏,保险丝有没有烧坏,整流管有没有击穿,就这几个方面,全检查一遍就好了

开关电源原理开关电源组成

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。接下来小编为大家介绍开关电源原理及开关电源组成。开关电源原理开关电源的工作原理不同于线性电源,线性电源是让功率晶体管工作于线性模式下,而开关电源是让功率晶体管工作于导通和关断两种工作状态下,换言之,是通过“斩波”,即把输入直流电压的幅值斩成与输入电压幅值相等的脉冲电压来实现的。开关电源的这种工作原理使得加于功率晶体管上的伏安乘积很小(导通状态下,电压低,电流大;关断状态下,电压高,电流小),即功率晶体管上产生的损耗很小。开关电源组成1、主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。2、控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。3、检测电路提供保护电路中正在运行中各种参数和各种仪表数据。4、辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。开关电源输出电压低的原因1、220V交流电压输入电路和整流滤波电路对开关管提供的工作电压不够,超出脉宽调制电路的控制范围。2、负载电路存在过流引起开关电源负载加重而导致输出电压下降。3、开/关机接口电路处于待机状态,令开关电源工作于低频振荡状态其输出电压为待机状态下的度数。此类故障仅应于无预备电源,CPU预备状态下的工作电压由开关电源提供的机型。4、开/关机接口电路末端因故工作于开机或待机之间的状态,从而导致开关电源工作于待机与开机状态之间的工作频率,造成开关电源输出电压高于待机值,低于开机值。5、保护电路端因故障工作于导通状态,使电源进入弱振窄脉冲供电,引起开关电源输出电压下降。6、整流输出电路中的二极管和滤波电容,限流电阻损坏引起输出电压变低。7、脉宽调制电路有问题,不能对开关电源输出电压的变化做出正切的响应,对电源开关管基极电压调整方向大小不对,从而造成开关电源输出电压低。8、正反馈电路中的正反馈电阻变大,放电二极管性能变差,正反馈量不足,导致振荡周期变长。振荡频率下降,从而引起开关电源输出电压低。9、它激式开关电源因未得到行逆成而工作低于低频状态,造成输出电压低。

tl3845p开关电源原理

TL3845P是一款PWM控制器,它在开关电源中的作用是当COMP端的输入电压变化时,控制开关信号的频率随之发生相应的变化,通过这种功能来反馈调节开关电源的输出电压使之保持稳定。如果还有问题请到大比特论坛问我,如果帮上了你的忙还望采纳答案!

UC3842的开关电源原理图 LED节能灯的工作原理图

384X系列,网上很多成熟电路图,到电源相关论坛找一下,多如牛毛

36v转24v开关电源原理图

问错地方了,你用的是变压器么,如果是那可以通过控制变压器的线圈多少来控制电压,如果不是,好像得看你用电器的电阻来更改,就知道这么多啦

求明纬开关电源原理图

这个好像就是一个半桥开关电源吧,TL494驱动,350W,24V输出,电子产品电路图现在已经很难看到了,厂家很少给出来,一般也很少用到,除非有民间老一辈师傅愿意自己画,否则都不会有。你如果想维修不如直接说什么问题。

跪求此开关电源原理

这个图确实不规范,C12接反了,插电就“放烟花”。这个图大概的原理是:4、5脚输入交流电,经保险丝、互感滤波电路给D1~D4组成的桥式整流电路整流后变成脉动的直流电,再经C12(画反了,正极应该朝下)滤波变成很平滑的直流电压;在这里电压分两路,一路经启动电阻R8、R10、R11给5M0365R厚膜IC提供启动电压,一路经热敏电阻NTC到开关变压器的主绕组(貌似楼主画错了)。5M0365R得到启动电压后内部开关管导通,主绕组有电流流过,产生感应电动势,和主绕组一边的另一个反馈绕组会感应到一个感应电压,感应电压经D6反馈回来经R10给5M0365R提供更大的电压和电流,使其内部的开关管导通程度加大,流过主绕组的电流加大,产生的感应电动势加大(楞次定律),反馈绕组感应到的电压增大,并最终使开关管达到饱和。由于开关管饱和后,流过它的电流不再变化,所以流过主绕组的电流不再变化,根据楞次定律,流过电感线圈的电流为恒定值或为0时是不会产生感应电动势的,所以组绕组的感应电动势消失,反馈绕组没有感应电压,所以流过D6的电压会慢慢下降,这时又是一个正反馈过程,由于反馈绕组的电压开始下降,就意味着IC内部的开关管基极电流开始下降,那么它的集电极电流也开始下降,根据楞次定律,流过电感线圈的电流突变时,电感线圈就会产生一个感应电流阻碍它变化。也就是说,当流过主绕组的电流减小时,主绕组会产生一个感应电流阻碍它减小,那么这时在主绕组上会产生一个反向电动势,这个反向电压很高,如果输入的是220V的交流电的话,这个反向电压可以达到1000V(瞬间高压,专业术语叫“尖峰脉冲电压”),这对于开关管来说是很危险的,所以电路设计了由D7、R9、C11组成的尖峰脉冲吸收电路来吸收掉这个高压,从而保护了开关管。主绕组产生的这个反向电动势,同样会被反馈绕组感应到,也就是说反馈绕组上的电压变成了负电压,这时流过D6的电流和压会急剧下降,甚至变成负电压(这就是为什么开关电源起振后基极变成负电位的原因),这时开关管截止。开关管截止后主绕组又没电压了,反馈绕组也没有感应电压了,那开关管再次导通靠什么呢?就是靠那三个启动电阻了,从整流滤波来的电压使开关管又开始慢慢导通,重复上面的过程,那么开关电路就开始振荡,次级线圈也会感应到电压,感应的电压经双向整流二极管STPS2045CT整流,L1、C1滤波后输入低压直流电。最后还有就是自动稳压控制电路了,是由光耦(楼主画错了)、三极管、电位器等元件组成,这个电路,三极管的基极那里可能画错了。它的大概原理是如果输出电压有变化(升高或降低),过三极管的电流就会有变化,那么光耦的亮度也会有变化,流过光耦的电流也会有变化,光耦是连到厚膜IC的,那么这个变化会控制内部开关管的导通时间,从而控制输出电压保持稳定。逻辑关系是,以输出电压升高为例:输出电压升高——流过三极管的C极电流增大——光耦内部的发光二极管变亮——光耦另一半的光敏三极管CE极电流增大——厚膜IC内部的开关管B极电流减小——开关管导通时间缩短——输出电压下降。输出电压下降的情况,楼主可以自己分析一下。看在在下打了差不多一个钟的字的份上,没功劳也有苦劳,希望楼主采纳,谢谢!有问题可以发邮件给我:294033392@qq.com。

请问,谁有简单的开关电源原理图了?能不能给我传一个?谢谢

简单的原理图做出来的电源性能都无法保证,还是找口碑好的产品参考一下最好。

求教,在下图RCC开关电源原理图中的电容C1在电路中起什么作用啊?

与电阻一起用来起振的

求明纬开关电源原理图,220V/110V交流转48V直流。里面有TL494芯片,变压器上显示SK-120W-48V。

没有标准的图, 厂家随产品的更新去改变线路的, 自己实绘的图是最准确的!

开关电源原理图

随着我国电子电力科技技术不断的发展,不管是在家用或者是其他地方所使用的电源开关,都得到了较大的突破性的实质发展。目前,就以开关电源来说,几乎被广泛的应用于所有的电子电器设备,是如今当下电子信息产业中最不可缺少的一种电源方式。那么关于开关电源原理图,是怎么回事呢?感兴趣的朋友们,可以来和小编一起探讨探讨哦!下面就让我们给大家介绍一下吧。一、开关电源工作原理—简介顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。二、开关电源工作原理—结构开关电源大致由主电路、开关电源控制电路、检测电路、辅助电源四大部份组成。1、主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。2、控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。3、检测电路提供保护电路中正在运行中各种参数和各种仪表数据。4、辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。三、开关电源工作原理—分类开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化;AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。小编所介绍的开关电源工作原理,可能大家还不是很懂,如果想要更加具体的了解开关电源原理图,请您继续关注。

求12V4a直流开关电源原理图

这么大电流,干什么用的?

求一个12V开关电源原理图和各元器件参数如何计算

要求太简单。输入是交流还是直流,输出功率多少,纹波多少等等

手机充电器 开关电源原理图 稳压二极管的作用不理解

C4??快拆了它

用UC3842构成的开关电源原理图如下。我做了这个电路板,但是输出电压随

负极也得联通才行,也就是5脚要跟输出端的负极连接上才行

单端正激式开关电源原理?

前两个 不回答你 楼上的 答案你 自己看看。 第三个 的话 简单跟你说下 最好 是自己看看书问个懂的人 先知道什么是 法拉第电磁感应定律 楞次定律 高中 物理 也学过 电和磁啊 知道 什么是磁化曲线 什么是磁滞回线 把这几 名词的 意义 搞懂 你 就明白了 简单点说 磁复位 就是 给 建立 磁场 的电流 一个放电 的回路 来减小电流 电流没了 磁场也就 消失了 这不 就是 磁复位了 么 ! (为了 让你懂说的简单点 已经 很好理解了 吧 ? 主要 看书吧)

电脑开关电源原理图

你又邮箱吗 我给你发过去

开关电源原理与设计

输入和输出隔离 X电容 Y电容 高压测试 就OK了

怎样快速学会开关电源原理,并能独立设计开关电源?

跟我学

可调开关电源原理 一种大功率可调开关电源的设计方案

一种大功率可调开关电源的设计方案[图] ( 2012/3/29 13:21 ) 1.引言 开关电源作为线性稳压电源的一种替代物出现,其应用与实现日益成熟。而集成化技术使电子设备向小型化、智能化方向发展,新型电子设备要求开关电源有更小的体积和更低的噪声干扰,以便实现集成一体化。对中小功率开关电源来说是实现单片集成化,但在大功率应用领域,因其功率损耗过大,很难做成单片集成,不得不根据其拓扑结构在保证电源各项参数的同时尽量缩小系统体积。 2.典型开关电源设计 开关电源一般由脉冲宽度调制(PWM,Pulse Width Modulation)控制IC(Integrated Circuit)和功率器件(功率MOSFET 或IGBT)构成,且符合三个条件:开关(器件工作在开关非线性状态)、高频(器件工作在高频非接近上频的低频)和直流(电源输出是直流而不是交流)。 2.1 控制IC 以MC33060 为例介绍控制IC。 MC33060 是由安森美(ON Semi)半导体公司生产的一种性能优良的电压驱动型脉宽调制器件,采用固定频率的单端输出,能工作在-40℃至85℃。其内部结构如图1 所示[1],主要特征如下: 1) 集成了全部的脉宽调制电路; 2) 内置线性锯齿波振荡器,外置元件仅一个电阻一个电容; 3) 内置误差放大器; 4) 内置 5V 参考电压,1.5%的精度; 5) 可调整死区控制; 6) 内置晶体管提供200mA 的驱动能力; 7) 欠压锁定保护; 图1 MC33060 内部结构图 其工作原理简述:MC33060 是一个固定频率的脉冲宽度调制电路,内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如(2-1)式: 输出脉冲的宽度是通过电容CT 上的正极性锯齿波电压与另外两个控制信号进行比较来实现。功率管Q1 的输出受控于或非门,即只有在锯齿波电压大于控制信号期间输出才有效。 当控制信号增大时,输出脉冲的宽度将减小,具体时序参见如下图2. 图 2 MC33060 时序图 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV 的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,即输出驱动的最大占空比为96%.当把死区时间控制输入端接上固定的电压(范围在0-3.3V)即能在输出脉冲上产生附加的死区时间。脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V 变化到3.5V 时,输出的脉冲宽度从被死区确定的最大导通百分比时间下降到零。两个误差放大器具有从-0.3V 到(Vcc-2.0)的共模输入范围,这可从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行"或"运算,正是这种电路结构,放 大器只需最小的输出即可支配控制回路。 2.2 DC/DC 电源拓扑 DC/DC 电源拓扑一般分为三类:降压、升压和升降压。此处以降压拓扑介绍,简化效果图如下图3 所示。输出与输入同极性,输入电流脉动大,输出电流脉动小,结构简单。 图 3 Bulk 降压斩波电路 在开关管导通时间ton,输入电源给负载和电感供电;开关管断开期间toff,电感中存储的能量通过二极管组成续流回路,保证输出的连续。负载电压满足如下关系式(2-2): 2.3 典型电路与参数设计 典型电路如下图4 所示。 图 4 MC33060 的降压斩波电路 MC33060 作为主控芯片控制开关管的导通与截止,由其内部结构功能可知,在MC33060内部有一个+5V 参考电压,通常用作两路比较器的反相参考电压,设计中1 脚和2 脚的比较器用来作为输出电压反馈,13 脚和14 脚的比较器用来检测开关管的电流是否过流。电路中2 脚通过一个反相电路接参考电压,降压输出反馈经一同相电路接MC33060 的1 脚。当电路处于工作状态时,1 脚和2 脚电压就会相互比较,根据两者的差值来调整输出波形脉宽,达到控制和稳定输出的目的。 电路中过流保护采用0.1 欧姆额定功率为1W 的功率电阻作为采样电阻,在电流过流点,采样电阻上的电压为0.1V.14 脚用作采样点,因此13 脚的参考电压由Vref 分压设定为0.15V,相比0.1V 留有一定余地。当采样电压高于设定值时,MC33060 将自动保护,关闭PWM 输出。保护点还和3 脚的控制信号有关,根据对该脚的功能分析,选择积分反馈电路,使得降压电路在空载或满载时,Comp 脚的电压始终在正常范围(0.5V-3.5V)之内。 输出 PWM 波形的频率由管脚5 的电容和管脚6 的电阻值来确定,降压电路采用25KHz的波形频率,选择CT 值为1nF 电容,RT 为47K 的普通电阻达到设计要求。 3.本系统设计 本设计采用的是DC(Direct Current)/DC 转换电路中的降压型拓扑结构。输入为220VAC和0-10V 可调直流电压,输出为0-180V 可调,最大输出电流能达8A,系统组成 框图如下图5 所示。在大功率开关电源设计中,为防止在启动时的高浪涌电流冲击,常采用软启动电路,本设计不重点介绍。 图 5 系统组成框图 3.1 整流滤波电路 采用全桥整流电路,如下图6 所示。输出电流要求最大达到8A,考虑功率损耗和一定的余量,选择10A 的方桥KBPC3510 和10A 的保险管。整流后的电压达310V,采用两个250V/100uF 电容作滤波处理。图中开关S1 和电阻R1 并联为"软启动"部分,此处未作详细讲解,详细软启动设计见各种开关电源软启动设计。 图 6 整流电路。 3.2 控制IC 与输入电路 MC33060 控制电路和输入调节电路分别如下图7 和图8 所示,选MC33060 为控制IC,其外围器件选择此处不再赘述,参考典型电路设计中参数选择部分。其中比较器1 作电压采样,比较器2 作电流采样。输入可调电压经分压跟随后送入比较器的负向端作为参考电压控制电源输出大小。 图 7 MC33060 控制电路 图 8 输入调节电路 3.3 反相延时驱动电路 反相延时驱动电路如下图8 所示。电路中驱动芯片采用了美国International Rectifier(IR)公司的IR2110.它不仅包括基本的开关单元和驱动电路,还具有与外电路结合的保护控制功能。其悬浮沟道的设计使其可以驱动工作在母线电压不高于600V 的开关管,其内部具有欠压保护功能,与外电路结合,可以方便地设计出过电流,过电压保护,因此不需要额外的过压、欠压、过流等保护电路,简化了电路的设计。 图 8 反相延时驱动电路 该芯片为而输出高压栅极驱动器,14 脚双列直插,驱动信号延时为ns 级,开关频率可从几十赫兹到几百千赫兹。IR2110 具有二路输入信号和二路输出信号,其中二路输出信号中的一路具有电平转换功能,可直接驱动高压侧的功率器件。该驱动器可与主电路共地运行,且只需一路控制电源,克服了常规驱动器需要多路隔离电源的缺点,大大简化了硬件设计。IR2110 就简易真值图如下图9 所示。 图 9 IR2110 简易真值图。 IR2110 有2 个输出驱动器,其信号取自输入信号发生器,发生器提供2 个输出,低侧的驱动信号直接取自信号发生器LO,而高侧驱动信号HO 则必须通过电平转换方能用于高侧输出驱动器。本系统中驱动双管需一片IR2110 即可。 因驱动双管,且双管不能同时导通,控制IC 输出只有一路信号,则在控制IC 输出和驱动之间需加入反相延时电路,将控制IC 输出的一路PWM 经同相和反相比较器后,经电阻R29 和R30 的上拉分别对电容C12、C13 充电产生延时,使得两路PWM 具有对称互补性且具有一定的死区间隔,保证主回路中两开关管不会同时导通。在电路中HIN 和LIN 标号端得到的波形图如下图10 所示。 图 10 反相后驱动波形 3.4 主回路与输出采样 主回路如图 11 所示,采用半桥开关电路。 图 11 主回路 根据整流后的电压和输入电流参数,选择IRF840 为高频开关管,其最大耐压VDS 为500V,最大能承受的导通电流ID 为8A,满足设计要求。工作在高频工作状态的续流二极管一般选用快恢复的二极管,此处选择HFA25TB60,能承受600V 的反向压降,最大导通电流为25A,且恢复时间仅为35ns.输出部分通过两个电阻分压至电压采样电路,如下图12 所示。 图 12 电压采样电路 3.5 过流保护电路 过流保护电路如下图13 所示。 图 13 过流检测电路。 在主回路的上端串联一个0.33 欧姆10W 的功率电阻作为采样电阻,当电流过大时,光耦中光敏三极管导通,检测电路输出高电平到IR2110 的SD 端,由于SD 是低电平有效、高电平关断点,因此电流过大时能很好地保护电路。且如前所述,IR2110 自身带有各种保护电路,故外围的电流电压保护电路可以大大简化。 4. 总结 本设计给出了在非隔离拓扑下一种设计大功率开关电源的方法,电路结构简单。在主回路中采用半桥电路替代传统的单管开关电路,在上管关闭时,下管的开通能更好地保证输出续流的稳定性,且保证功率的输出。文中并未给出电感量的计算方法,因不是讨论重点,可根据电路中输出电流、电压和开关管的RDS(MOSFET 管漏极和源极导通电阻)等参数来计算,实际中应留有一定的余量值。系统运行基本稳定,可考虑应用于工业电源设计中。

开关电源原理图电源开关的品牌都有哪些

在装修房子的时候,都是要留有开关电源的,把电源放在墙里面,对家人的安全也是有保障的,电源开关也是每家每户都不可缺少的,每天都会用到的,有很多人会问,开关电源一个小小的东西为什么就能发出电,开关电源原理图是什么,在下面我们就给大家介绍一下吧!一、开关电源原理图1.交流电源输入经整流滤波成直流通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上,开关变压器次级感应出高频电压,经整流滤波供给负载,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的,交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;2.当开关管VT1导通时,电感L储存能量。当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。3.这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。二、电源开关的品牌都有哪些1.Schneider施耐德(400-810-1315,始于1920年法国,全球能效管理者,配电设备领域领先品牌,电气领域的著名制造商,施耐德电气(中国)有限公司2.SIEMENS西门子(400-616-2020,始于1847年德国,2014年退出家电行业,专注于电气化/自动化/数字化领域,500强企业,西门子(中国)有限公司3.台达开关电源,中达电通股份有限公司,交换式电源供应器产品全球领先,大型视讯显示及工业自动化方案提供商,台达电子工业股份有限公司。4.朝阳电源4NIC,航天长峰朝阳电源有限公司,始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司。5.台达DELTA(886-2-87972088,交换式电源供应器产品处于领先品牌,大型视讯显示及工业自动化方案提供商,台达电子工业股份有限公司6.明纬MEANWELL(400-800-3608,成立于1982年台湾,交换式电源供应器领导品牌,大型高品质交换式电源制造商,明纬(广州)电子有限公司7.朝阳电源4NIC(4001050001,始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司8.朝阳电源4NIC(始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司了解一下开关电源的品牌都有哪些,在众多的品牌当中,想要选择出好的,就要对开关电源简单的了解一下了,以上就是小编为大家介绍的开关电源原理图和电源开关的品牌都有哪些到这里就结束了。

电源开关门的好的品牌开关电源原理图

说到开关电源,相信大家一定不会感到陌生,在平时生活中,开关电源虽然是一个小物件,但是电器都离不开的,不过市场上开关电源的品牌还是比较多的,所以导致很多人不知道该怎么选择,那么电源开关门的好的品牌都有哪些呢?开关电源原理图是什么样子呢?接下来就由我们来给大家介绍一下吧!一、开关电源原理图1.交流或直流的输入电压经“输入陷波”电路后到“整流滤波”电路,得到高压(约300V)直流电压。“功率转换”将高压直流逆变成约35kHz的高频交流,经高频变压器变换到输出所需的电压,再经高频整流滤波得到输出电压。控制电路对输出电压和输出电流取样,闭环反馈后产生脉宽调制(PWM)信号控制“功率转换”电路,使输出电压或电流保持稳定。2.负荷开关是一种带有专用灭弧触头、灭弧装置和弹簧断路装置的分合开关。从结构上看,负荷开关与隔离开关相似(在断开状态时都有可见的断开点),但它可用来开闭电路,这一点又与断路器类似。然而,断路器可以控制任何电路,而负荷开关只能开闭负荷电流,或者开断过负荷电流,所以只用于切断和接通正常情况下电路,而不能用于断开短路故障电流。但是,要求它的结构能通过短路时间的故障电流而不致损坏。由于负荷开关的灭弧装置和触头是按照切断和接通负荷电流设计的,所以负荷开关在多数情况下,应与高压熔断器使用,由后者来担任切断短路故障电流的任务。负荷开关的开闭频度和操作寿命往往高于断路器。二、电源开关门的好的品牌1.Schneider施耐德(400-810-1315,始于1920年法国,全球能效管理者,配电设备领域领先品牌,电气领域的著名制造商,施耐德电气(中国)有限公司2.朝阳电源4NIC,航天长峰朝阳电源有限公司,始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司。3.公牛当前是中国开关插座的领衔品牌,它从事智能产品的研制创新,为家庭提供智能、便捷舒服、安全的用电场所。公牛开关插座运用的材料为进口的pc材料,可以全面防阻燃;使用年限长,公牛的开关能够使用8万次之多,为国家标准的2倍;设计人性化,它将插座二、三极插之间的间距从传统的8MM,改成22MM,使用起来更省事;它的内部材料采用的是磷青铜镀镍技术,不但导电性好,而且绝缘电火花、抗氧化、抗磨损性能好;功能优化,公牛开关新增防雷性能,并针对儿童研发出了有防触电功能的新产品。当你看到这的时候,就证明小编的文章已经要接近结束了,那么大家看了小编的这篇有关于电源开关门的好的品牌以及开关电源原理图的简单介绍之后,对于以上内容都了解了吧。

24v开关电源原理是什么

24V开关电源是一种将交流电转换为直流电的电源,通常用于为设备提供稳定的直流电源。它通常包含一个变压器、一个桥式整流器和一些调节电路。变压器的作用是将输入的交流电的电压转换为所需的电压。桥式整流器则将交流电转换为直流电。调节电路则可以调节输出电压的稳定性。一般来说,24V开关电源可以使用交流电源或直流电源作为输入。只需要通过改变变压器的档位来调节输出电压。

开关电源原理分析

mark一下,以便查阅

开关电源原理是什么边反馈原理是什么

开关电源的反馈原理指的是开关电源的输出电压、电流、频率或功率如何被监测并用于调整输出电压、电流、频率或功率的过程。开关电源的反馈机制通常利用了降压电路、升压电路或降频电路等电路来监测输出电压、电流、频率或功率,并通过调节开关电源的工作参数,如开关次数、开关频率、开关占空比等,来调整输出电压、电流、频率或功率。通常情况下,开关电源的反馈机制会被用于控制电压或电流的精度和稳定性,以及保持开关电源的功效高。反馈机制的类型和设计方法可以有很大的不同,因此需要根据具体的应用情况来选择合适的反馈机制。

开关电源原理分析

开关电源是工作在开关状态的电源,有负反馈能根据负载的变化改变电源通断的占空比,从而达到稳压的目的。开关电源的主要部分是那个变压器,你这个图是一个结构比较简单的开关电源,我们首先确定的是变压器的左边是原边,右边是副变,副边上上面那个是电压输出,二极管和电容的作用分别是单向导通和滤波。副边下面的那个线圈的作用很重要,是作为负反馈将输出侧的电压情况反馈给原边,你这个电路图中没有开关电源的专用芯片那么负责控制通断的就应该是那个三极管摸样的东西。那你这个电路的整个工作原理可以这样分析,直流电源流过变压器原边产生磁场,在变压器副边感应出磁场从而产生电压,当负反馈的感应电压到一定值得时候,三极管关断,原边回路被切断,副边不再感应出电压,三极管又导通,原边再次导通,重复以上的过程,所以电源就一直工作在这个开关状态从而达到稳压的目的。这个电路大概的过程应该是这样,至于那个电阻和电容并联的耦合电路时为了滤掉交流部分,你这个电路比较简单实际的工作效果可能不会太好,希望上面的分析能够对你有帮助。

求IRFP450组成的开关电源原理图

IRFP450只是一个场效应管,起开关作用,你只说可一个开关管的型号是得不到你想要的图纸的。

电脑开关电源原理是什么

当您按下电脑的电源按钮时,您实际上是在打开或关闭电脑的电源供应。电脑的电源按钮通常是由一个小型开关控制的,该开关可以断开或连接电源线到电脑的电源供应单元(PSU)。当电源供应单元收到电源时,它会向电脑的其他部件供电,使它们能够工作。当您按下电源按钮将电脑关闭时,实际上是在断开电源供应单元与电脑的连接。这会使电脑的其他部件停止工作,并使电脑进入待机模式。在待机模式下,电脑的一些部件仍然保持工作状态,以便您能够快速重新启动电脑。有关电脑电源的更多信息,您可以搜索有关电脑电源供应单元(PSU)的内容。

开关电源原理

整流滤波- 变压 控制-整流滤波 -稳压恒流

开关电源原理是怎样的

开关电源,之所以出来个开关这两个字,就是因为它工作在开关状态。开关电源提供的输出很稳定,控制也很方便,现在来看,价格也很便宜。开关电源可以将直流直接变为直流,而事实上目前输入交流,进去后马上就被整流成为直流了。直流电经过PWM震荡电路的控制,控制MOS管不断开关,形成方波或其他波形,通常频率非常高,一般有400KHZ,这个高频的交流电,进入一个变压器,变压后输出,然后整流,即可得到需要的输出直流了之所以需要使频率到400KHZ那么高,事实上,频率越高,则可以把自己制造得越小,比如开关电源500W的可能只有1千克,而变压器恐怕10千克都不行。频率越高,里边变压部分就可以做得越小,但控制就越麻烦越复杂,现在400KHZ左右是比较适合的。正因为这样,所以开关电源才被广泛应用,比如计算机的电源,充电器的,都是开关电源了。而且开关电源效率能达到98%甚至更高,而变压器都无法达到的

开关电源原理详解

开关电源原理是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。最后这些交流波形经过整流滤波后就得到直流输出电压。控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。扩展资料开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。

开关电源原理详解

  开关电源原理是通过斩波,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。脉冲的占空比由开关电源的控制器来调节,一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低,通过增加变压器的二次绕组数就可以增加输出的电压值,最后这些交流波形经过整流滤波后就得到直流输出电压。   开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式,前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。   另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。

开关电源原理与应用设计的目录

第1篇 PWM开关变换器的基本原理第1章 开关变换器概论1.1 什么是开关变换器和开关电源1.2 DC-DC变换器的基本手段和分类1.3 DC-DC变换器主回路使用的元件及其特性1.3.1 开关1.3.2 电感1.3.3 电容1.4 DC-DC变换器发展历程、现状和趋势1.4.1 开关电源技术发展的历程1.4.2 20世纪推动开关电源发展的主要技术1.4.3 开关电源技术发展方向1.4.4 大电容技术第2章 基本的PWM变换器主电路拓扑2.1 Buck变换器2.1.1 线路组成2.1.2 工作原理2.1.3 电路各点的波形2.1.4 主要概念与关系式2.1.5 稳态特性的分析2.2 Boost变换器2.2.1 线路组成2.2.2 工作原理2.2.3 电路各点的波形2.2.4 主要概念与关系式2.2.5 稳态特性的分析2.2.6 纹波电压的分析及减少方法2.3 Buck-Boost变换器2.3.1 线路组成2.3.2 工作原理2.3.3 电路各点的波形2.3.4 主要概念与关系式2.3.5 优缺点2.4 C"uk变换器2.4.1 线路组成2.4.2 工作原理2.4.3 电路各点的波形2.4.4 主要概念与关系式2.5 四种基本型变换器的比较2.6 四种基本型三电平变换器2.6.1 Buck三电平变换器电路与工作原理2.6.2 Buck三电平变换器输出电压与输出电流的关系2.6.3 滤波器设计2.6.4 Boost、Buck-Boost C〖DD(-?5/5〗"〖DD)〗uk三电平变换器第3章 带变压隔离器的DC-DC变换器拓扑3.1 变压隔离器的理想结构3.2 单端变压隔离器的磁复位技术3.3 自激推挽式变换器的工作原理3.4 能量双向流动的DC-DC变压隔离器3.5 隔离式三电平变换器3.5.1 正激变换器3L线路3.5.2 半桥、全桥变换器3L线路第4章 变换器中的功率开关元件及其驱动电路4.1 双极型晶体管4.1.1 晶体管的开关过程4.1.2 开关时间的物理意义及减小的方法4.1.3 抗饱和技术4.2 双极型晶体管的基极驱动电路4.2.1 一般基极驱动电路4.2.2 高压双极型晶体管基极驱动电路4.2.3 比例基极驱动电路4.3 功率场效应管4.3.1 功率场效应管的主要参数4.3.2 功率场效应管的静态特性4.3.3 MOSFET的体内二极管4.4 功率场效应管的驱动问题4.4.1 一般要求4.4.2 MOSFET的驱动电路4.5 绝缘栅双极晶体管4.5.1 IGBT结构与工作原理4.5.2 IGBT的静态工作特性4.5.3 IGBT的动态特性4.5.4 IGBT的栅极驱动及其方法4.6 开关元件的安全工作区及其保护4.6.1 双极型晶体管二次击穿原因及对SOA的影响4.6.2 安全工作区(SOA)4.6.3 保护环节——RC缓冲器第5章 磁性元件的特性与计算5.1 概述5.1.1 在开关电源中磁性元件的作用5.1.2 掌握磁性元件对设计的重要意义5.1.3 磁性材料基本特性的描述5.1.4 磁心型号对照表5.2 磁性材料及铁氧体磁性材料5.2.1 磁心磁性能5.2.2 磁心结构5.3 高频变压器设计方法5.3.1 变压器设计方法之一——面积乘积(AP)法5.3.2 变压器设计方法之二——几何参数(K?G)法5.4 电感器设计方法5.4.1 电感器设计方法之一——面积乘积(AP)法5.4.2 电感器设计方法之二——几何参数(K?G)法5.4.3 无直流偏压的电感器设计5.5 抑制尖波线圈与差模、 共模扼流线圈5.5.1 抑制尖波的电磁线圈5.5.2 差模与共模扼流线圈5.5.3 使用对绞线时干扰的抑制5.5.4 使用电缆线时干扰的抑制5.6 非晶、 超微晶(纳米晶)合金软磁材料特性及应用5.6.1 非晶合金软磁材料的特性5.6.2 超微晶合金软磁材料的特性5.6.3 非晶、 超微晶合金软磁材料的应用第6章 开关电源占空比控制芯片及集成开关变换器的原理与应用6.1 开关电源系统的隔离技术6.2 开关电源PWM控制芯片及智能功率开关6.2.1 1524/2524/3524芯片简介6.2.2 芯片的工作过程6.3 适用于功率场效应管控制的IC芯片6.3.1 1525A与1524的差别6.3.2 1525A/1527A的应用6.4 电流控制型脉宽调制器6.4.1 UC1846/UC1847工作原理及方框图6.4.2 1842/2842/3842 8脚脉宽调制器6.5 智能功率开关及其应用6.5.1 概述6.5.2 工作原理6.6 便携式设备中电源使用的集成块6.6.1 简介6.6.2 MAX863芯片的应用6.6.3 MAX624芯片的应用及设计方法第7章 功率整流管7.1 功率整流二极管7.1.1 功率整流二极管模型7.1.2 功率二极管的主要参数7.1.3 几种快速开关二极管7.2 同步整流技术7.2.1 概述7.2.2 同步整流技术的基本原理7.2.3 同步整流驱动方式7.2.4 同步整流电路7.2.5 SR-Buck变换器7.2.6 SR-正激变换器7.2.7 SR-反激变换器第8章 有源功率因数校正器8.1 AC-DC电路的输入电流谐波分量8.1.1 谐波电流对电网的危害8.1.2 AC-DC变流电路输入端功率因数8.1.3 对AC-DC电路输入端谐波电流限制8.1.4 提高AC-DC电路输入端功率因数和减小输入电流谐波的主要方法8.2 功率因数和THD8.2.1 功率因数的定义8.2.2 AC-DC电路输入功率因数与谐波的关系8.3 Boost功率因数校正器(PFC)的工作原理8.3.1 功率因数校正的基本原理8.3.2 Boost有源功率因数校正器(APFC)的主要优缺点8.4 APFC的控制方法8.4.1 常用的三种控制方法8.4.2 电流峰值控制法8.4.3 电流滞环控制法8.4.4 平均电流控制法8.4.5 PFC集成控制电路UC3854A/B简介8.5 反激式功率因数校正器8.5.1 DCM反激功率因数校正电路的原理8.5.2 等效输入电阻R?e8.5.3 平均输出电流和输出功率8.5.4 DCM反激变换器等效电路平均模型第9章 开关电源并联系统的均流技术9.1 概述9.2 开关电源并联系统常用的均流方法9.2.1 输出阻抗法9.2.2 主从设置法9.2.3 按平均电流值自动均流法9.2.4 最大电流法自动均流9.2.5 热应力自动均流法9.2.6 外加均流控制器均流法第10章 开关电源的小信号分析及闭环稳定和校正10.1 概述10.2 电感电流连续时的状态空间平均法10.3 电流连续时的平均等效电路标准化模型10.4 电流不连续时标准化模型10.5 复杂变换器的模型10.6 用小信号法分析有输入滤波器时开关电源的稳定问题10.7 开关电源控制原理及稳定问题10.7.1 闭环及开环控制10.7.2 开关电源结构框图10.8 稳定判别式波德图绘制10.8.1 常见环节的幅频特性和相频特性10.8.2 快速绘制开环对数特性曲线的方法10.8.3 用开环特性分析系统的动态性能10.9 实测波德图的方法及相关设备10.9.1 开环系统直接注入法10.9.2 闭环回路直接注入法10.10 测定波德图,确定误差放大器的参数10.10.1 TL431相关测定技术10.10.2 提高稳定性的设计方法10.10.3 参数变化影响趋势的分析第2篇 PWM开关变换器的设计与制作〖KH1D〗第11章 反激变换器的设计11.1 概述11.1.1 电磁能量储存与转换11.1.2 工作方式的进一步说明11.1.3 变压器的储能能力11.1.4 反激变换器的同步整流11.2 反激式变换器的设计方法举例11.2.1 电源主回路11.2.2 变压器设计11.2.3 设计112W反激变压器11.2.4 设计中的几个问题11.2.5 计算变压器的另一种方法11.3 反激变换器的缓冲器设计11.3.1 反激变换器的开关应力11.3.2 跟踪集电极电压钳位环节11.3.3 缓冲器环节工作波形11.3.4 缓冲器参数的确定11.3.5 低损耗缓冲器11.4 双晶体管的反激变换器11.4.1 概述11.4.2 工作原理11.4.3 工作特点11.4.4 缓冲器11.4.5 工作频率11.4.6 驱动电路11.4.7 变压器设计注意漏电感和匝数第12章 单端正激变换器的设计12.1 概述12.2 工作原理12.2.1 电感的最小值与最大值12.2.2 多路输出12.2.3 能量再生线圈P?2的工作原理12.2.4 单端正激变换器同步整流12.2.5 正激变换器的优缺点12.3 变压器设计方法12.3.1 方法一12.3.2 方法二第13章 双晶体管正激变换器的设计13.1 概述13.1.1 线路组成13.1.2 工作原理13.1.3 电容C的作用13.2 双晶体管正激变换器变压器设计13.3 正激变换器的闭环控制及参数计算13.3.1 UPC 1099的极限使用值和主要电性能13.3.2 UPC 1099的应用第14章 半桥变换器的设计14.1 半桥变换器的工作原理14.2 偏磁现象及其防止方法14.2.1 偏磁的可能性14.2.2 串联耦合电容改善偏磁性能14.2.3 串联耦合电容的选择14.2.4 阶梯式趋向饱和的可能性及其防止14.2.5 直通的可能性及其防止14.3 软启动及双倍磁通效应14.3.1 双倍磁通效应14.3.2 软启动线路14.4 变压器设计14.5 控制电路第15章 桥式变换器的设计15.1 概述15.2 工作原理15.2.1 概述15.2.2 工作过程15.2.3 缓冲器的组成及作用15.2.4 瞬变时的双倍磁通效应15.3 变压器设计方法15.3.1 设计步骤及举例15.3.2 几个问题第16章 双驱动变压器推挽变换器的设计16.1 概述16.1.1 线路结构16.1.2 工作原理16.1.3 各点波形16.2 开关功率管的缓冲环节16.3 推挽变换器中变压器的设计第17章 H7C1为材质PQ磁心高频变压器的设计17.1 损耗及设计原则简介17.1.1 设计原则17.1.2 满足设计原则的条件17.2 表格曲线化的设计方法17.2.1 表17.1的形成与说明17.2.2 扩大表17.1的使用范围第18章 电子镇流器的设计18.1 概述18.1.1 荧光灯18.1.2 荧光灯的结构及伏安特性18.1.3 高频电子镇流器的基本结构18.2 半桥串联谐振式电子镇流器18.3 带有源、无源功率因数电路的电子镇流器18.3.1 有源功率因数校正电子镇流器18.3.2 无源功率因数校正电子镇流器第19章 开关电源设计与制作的常见问题19.1 干扰与绝缘19.1.1 干扰问题及标准19.1.2 隔离与绝缘19.2 效率与功率因数19.2.1 高效率与高功率密度19.2.2 高功率因数19.3 智能化与高可靠性19.4 高频电流效应与扁平变压器设计19.4.1 趋肤效应和邻近效应的产生19.4.2 扁平变压器的设计?第3篇 软开关-PWM变换器第20章 软开关功率变换技术20.1 硬开关技术与开关损耗20.2 高频化与软开关技术20.3 零电流开关和零电压开关20.4 谐振变换器20.5 准谐振变换器20.6 多谐振变换器概述第21章 ZCS-PWM和ZVS-PWM变换技术21.1 ZCS-PWM变换器21.1.1 工作原理21.1.2 运行模式分析21.1.3 分析21.1.4 ZCS-PWM变换器的优缺点21.2 ZVS-PWM变换器21.2.1 工作原理21.2.2 运行模式分析21.2.3 分析21.2.4 ZVS-PWM变换器的优缺点第22章 零转换-PWM软开关变换技术22.1 零转换-PWM变换器22.2 ZCT-PWM变换器22.2.1 工作原理22.2.2 运行模式分析22.2.3 ZCT-PWM变换器的优缺点22.2.4 数例分析22.3 三端ZCT-PWM开关电路22.4 ZVT-PWM变换器22.4.1 工作原理22.4.2 运行模式分析22.4.3 ZVT-PWM变换器的优缺点22.4.4 应用举例22.4.5 三端零电压开关电路22.4.6 双管正激ZVT-PWM变换器第23章 移相控制全桥ZVS-PWM变换器23.1 DC-DC FB ZVS-PWM DC-DC变换器的工作原理23.2 PSC FB ZVS-PWM变换器运行模式分析23.3 PSC FB ZVS-PWM变换器几个问题的分析23.3.1 占空比分析23.3.2 PSC FB ZVS-PWM变换器两桥臂开关管的ZVS条件分析23.4 PSC FB ZCZVS-PWM变换器第24章 有源钳位软开关PWM变换技术24.1 概述24.2 有源钳位电路24.3 有源钳位ZVS-PWM正激变换器稳态运行分析24.4 有源钳位并联交错输出的反激变换器24.5 有源钳位反激-正激变换器第4篇 开关电源的计算机辅助分析与设计第25章 开关电源的计算机仿真25.1 电力电子电路的计算机仿真技术25.1.1 计算机仿真技术25.1.2 电路仿真分析(建模)方法25.1.3 SPICE和PSPICE仿真程序25.2 用SPICE和PSPICE通用电路模拟程序仿真开关电源25.2.1 概述25.2.2 功率半导体开关管的SPICE仿真模型25.2.3 控制电路的SPICE仿真模型25.2.4 正激PWM开关电源的SPICE仿真25.2.5 推挽式PWM开关电源的PSPICE仿真及补偿网络参数优化选择25.3 离散时域法仿真25.3.1 概述25.3.2 数值法求解分段线性网络的状态方程25.3.3 求解网络拓扑的转换时刻(边界条件)25.3.4 非线性差分方程(大信号模型)25.3.5 小信号模型25.3.6 程序框图25.3.7 仿真计算举例第26章 开关电源的最优设计26.1 概述26.1.1 可行设计26.1.2 最优设计26.1.3 开关电源的主要性能指标26.2 工程最优化的基本概念26.2.1 优化设计模型26.2.2 设计变量26.2.3 目标函数26.2.4 约束26.2.5 优化数学模型的一般形式26.2.6 工程优化设计的特点26.3 应用最优化方法的几个问题26.3.1 最优解的性质26.3.2 初始点的选择26.3.3 收敛数据26.3.4 变量尺度的统一26.3.5 约束值尺度的统一26.3.6 多目标优化问题26.4 DC-DC桥式开关变换器的最优设计26.4.1 DC-DC半桥式PWM开关变换器主要电路的优化设计26.4.2 开关、 整流滤波电路的优化设计数学模型26.4.3 变压器的优化设计数学模型26.4.4 半桥PWM开关变换器优化设计的实现26.4.5 5V/500W输出 DC-DC半桥PWM开关变换器优化设计举例26.4.6 DC-DC全桥ZVS-PWM变换器主电路的优化设计26.5 单端反激PWM开关变换器的优化设计26.5.1 数学模型概述26.5.2 多路输出等效为一路输出的方法26.5.3 优化设计举例26.6 PWM开关电源控制电路补偿网络的优化设计26.6.1 概述26.6.2 开关电源瞬态响应特性简介26.6.3 开关变换器的频域特性26.6.4 PWM开关变换器小信号模型26.6.5 瞬态优化设计数学模型26.6.6 计算举例26.7 DC-DC全桥移相式ZVS-PWM开关电源补偿网络的最优设计26.7.1 主电路及电压、 电流波形26.7.2 FB ZVS-PWM变换器小信号模型26.7.3 FB ZVS-PWM变换器主电路传递函数及频率特性26.7.4 FB ZVS-PWM开关电源补偿网络最优设计模型26.7.5 典型设计举例

求明纬s-350-27或者s-350-36开关电源原理图

u3002u3002u3002

跪求此开关电源原理

你是怎么上传图片的?我上传不了图片。

开关电源原理是什么呢?有没有懂的给个详细点的回复

开关电源原理,简单说就是把直流电先转换为交流电,然后再转换为直流电,从而实现升压、降压,并稳压;详细的了解,可百度“斩波器工作原理”等等相关内容;

求开关电源原理及实用电路图???

请看电路原理: 还有: 实际应用电路:这是一个由220V交流电源变成12V直流输出的15W开关电源的制作电路:

开关电源原理图攻略开关电源原理知识大全

对于开关电源大家都不陌生,这种开关电源使用非常广,而且具有电压稳定可靠、功耗小、转换效率高等优点,是如今当下电子信息产业中不可缺少的一种电源方式。那么,开关电源原理是怎样的呢?接下来,就由我们为大家带来开关电源原理图,一起来了解一下吧。一、开关电源原理图---什么是开关电源1.开关电源是一种利用现代电力电子技术控制开关开关时间比例,保持稳定输出电压的电源。开关电源通常由脉冲宽度调制控制IC和MOSFET组成。与线性电源相比,两个开关电源的成本随输出功率而增加,但增长率会有所不同。2.普通电源一般是线性电源,线性电源,是指调节管处于线性状态的电源,开关电源是一种比较新型的电源。它效率高,重量轻,可升高,降压,输出功率大。开关电源的高频率是其发展的方向。高频使开关电源小型化,开关电源进入更广泛的应用。此外,开关电源的开发和应用在节能,资源节约和环境保护方面具有重要意义。3.开关电源是利用电子开关器件(如晶体管,FET,晶闸管晶闸管等),通过控制电路,使电子开关器件不断“开”和“关”,让电子开关开关器件调制输入电压,实现DC/AC,DC/DC电压转换,可调输出电压和自动调节。4.开关电源一般有三种工作模式::频率,脉冲宽度固定模式,频率固定,脉冲宽度可变模式,频率,脉冲宽度可变模式。它由四个主要部分组成:主电路,开关电源控制电路,检测电路和辅助电源。二、开关电源原理图---开关电源工作原理开关电源可以使功率晶体管在开和关状态下工作。实际上,输入DC电压幅度被转换成等于输入电压幅度的脉冲电压。其工作原理是应用于功率晶体管的伏安产物很小(在导通状态,电压低,电流大;在关断状态,电压高,电流小),即功率晶体管产生的损耗很小。三、开关电源原理图---开关电源的工作条件除了上述开关电源的工作原理外,在开关电源工作原理运行的同时,开关电源也是一定的工作状态,如开关,工作时,它不是线性的国家,但在电子设备的工作。在DC的情况下,开关电源在工作时是DC,而不是AC;后者开关电源的高频在电子设备的工作状态下是高频,不接近工作的低频状态。在开关电源的工作原理中,这些工作条件是肯定的。四、开关电源原理图---开关电源的组成1.主电路浪涌电流限制:限制电源输入侧的浪涌电流。输入过滤器:用于过滤网格中的杂波,防止机器产生的杂波反馈到网格中。整流和滤波:直接将电网交流电整流为更平滑的直流电。逆变器:整流后的直流电源变为高频交流电,这是高频开关电源的核心部分输出整流和滤波:根据负载要求提供稳定可靠的直流电源。2.控制电路从输出采样,与设定值比较,然后控制逆变器,改变其脉冲宽度或脉冲频率,使输出稳定;根据测试电路提供的数据,识别出保护电路,并为各种电源提供控制电路。保障。3.检测电路提供保护电路运行的各种参数和各种仪表数据。4.辅助电源实现电源软件(远程)启动,保护电路和控制电路等工作电源。以上就是由我们为大家带来的关于开关电源原理图的相关介绍。

TL494CN开关电源原理图

去电源网里面有很多TL494的原理介绍,还有实例。

开关电源原理图

在装修房子的时候,都是要留有开关电源的,把电源放在墙里面,对家人的安全也是有保障的,电源开关也是每家每户都不可缺少的,每天都会用到的,有很多人会问,开关电源一个小小的东西为什么就能发出电,开关电源原理图是什么,在下面我们就给大家介绍一下吧!一、开关电源原理图1.交流电源输入经整流滤波成直流通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上,开关变压器次级感应出高频电压,经整流滤波供给负载,输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的,交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰;2.当开关管VT1导通时,电感L储存能量。当开关管VT1截止时,电感L感应出左负右正的电压,该电压叠加在输人电压上,经二极管VD1向负载供电,使输出电压大于输人电压,形成升压式开关电源。3.这种电路又称为升降压式开关电源。无论开关管VT1之前的脉动直流电压高于或低于输出端的稳定电压,电路均能正常工作。二、电源开关的品牌都有哪些1.Schneider施耐德(400-810-1315,始于1920年法国,全球能效管理者,配电设备领域领先品牌,电气领域的著名制造商,施耐德电气(中国)有限公司2.SIEMENS西门子(400-616-2020,始于1847年德国,2014年退出家电行业,专注于电气化/自动化/数字化领域,500强企业,西门子(中国)有限公司3.台达开关电源,中达电通股份有限公司,交换式电源供应器产品全球领先,大型视讯显示及工业自动化方案提供商,台达电子工业股份有限公司。4.朝阳电源4NIC,航天长峰朝阳电源有限公司,始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司。5.台达DELTA(886-2-87972088,交换式电源供应器产品处于领先品牌,大型视讯显示及工业自动化方案提供商,台达电子工业股份有限公司6.明纬MEANWELL(400-800-3608,成立于1982年台湾,交换式电源供应器领导品牌,大型高品质交换式电源制造商,明纬(广州)电子有限公司7.朝阳电源4NIC(4001050001,始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司8.朝阳电源4NIC(始于1986年,国内较具规模的专业电源生产基地,拥有自主知识产权支撑的电源产品技术体系,航天长峰朝阳电源有限公司了解一下开关电源的品牌都有哪些,在众多的品牌当中,想要选择出好的,就要对开关电源简单的了解一下了,以上就是小编为大家介绍的开关电源原理图和电源开关的品牌都有哪些到这里就结束了。

开关电源原理图攻略

对于开关电源大家都不陌生,这种开关电源使用非常广,而且具有电压稳定可靠、功耗小、转换效率高等优点,是如今当下电子信息产业中不可缺少的一种电源方式。那么,开关电源原理是怎样的呢?接下来,就由我们为大家带来开关电源原理图,一起来了解一下吧。一、开关电源原理图---什么是开关电源1.开关电源是一种利用现代电力电子技术控制开关开关时间比例,保持稳定输出电压的电源。开关电源通常由脉冲宽度调制控制IC和MOSFET组成。与线性电源相比,两个开关电源的成本随输出功率而增加,但增长率会有所不同。2.普通电源一般是线性电源,线性电源,是指调节管处于线性状态的电源,开关电源是一种比较新型的电源。它效率高,重量轻,可升高,降压,输出功率大。开关电源的高频率是其发展的方向。高频使开关电源小型化,开关电源进入更广泛的应用。此外,开关电源的开发和应用在节能,资源节约和环境保护方面具有重要意义。3.开关电源是利用电子开关器件(如晶体管,FET,晶闸管晶闸管等),通过控制电路,使电子开关器件不断“开”和“关”,让电子开关开关器件调制输入电压,实现DC/AC,DC/DC电压转换,可调输出电压和自动调节。4.开关电源一般有三种工作模式::频率,脉冲宽度固定模式,频率固定,脉冲宽度可变模式,频率,脉冲宽度可变模式。它由四个主要部分组成:主电路,开关电源控制电路,检测电路和辅助电源。二、开关电源原理图---开关电源工作原理开关电源可以使功率晶体管在开和关状态下工作。实际上,输入DC电压幅度被转换成等于输入电压幅度的脉冲电压。其工作原理是应用于功率晶体管的伏安产物很小(在导通状态,电压低,电流大;在关断状态,电压高,电流小),即功率晶体管产生的损耗很小。三、开关电源原理图---开关电源的工作条件除了上述开关电源的工作原理外,在开关电源工作原理运行的同时,开关电源也是一定的工作状态,如开关,工作时,它不是线性的国家,但在电子设备的工作。在DC的情况下,开关电源在工作时是DC,而不是AC;后者开关电源的高频在电子设备的工作状态下是高频,不接近工作的低频状态。在开关电源的工作原理中,这些工作条件是肯定的。四、开关电源原理图---开关电源的组成1.主电路浪涌电流限制:限制电源输入侧的浪涌电流。输入过滤器:用于过滤网格中的杂波,防止机器产生的杂波反馈到网格中。整流和滤波:直接将电网交流电整流为更平滑的直流电。逆变器:整流后的直流电源变为高频交流电,这是高频开关电源的核心部分输出整流和滤波:根据负载要求提供稳定可靠的直流电源。2.控制电路从输出采样,与设定值比较,然后控制逆变器,改变其脉冲宽度或脉冲频率,使输出稳定;根据测试电路提供的数据,识别出保护电路,并为各种电源提供控制电路。保障。3.检测电路提供保护电路运行的各种参数和各种仪表数据。4.辅助电源实现电源软件(远程)启动,保护电路和控制电路等工作电源。以上就是由我们为大家带来的关于开关电源原理图的相关介绍。

开关电源原理图视频讲解

开关电源原理介绍如下:一、开关电源工作原理顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。二、开关电源工作原理—结构开关电源大致由主电路、开关电源控制电路、检测电路、辅助电源四大部份组成。1、主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。2、控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。3、检测电路提供保护电路中正在运行中各种参数和各种仪表数据。4、辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。三、开关电源工作原理—分类开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化;AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。

开关电源原理图开关电源工作原理介绍

随着我国电子电力科技技术不断的发展,不管是在家用或者是其他地方所使用的电源开关,都得到了较大的突破性的实质发展。目前,就以开关电源来说,几乎被广泛的应用于所有的电子电器设备,是如今当下电子信息产业中最不可缺少的一种电源方式。那么关于开关电源原理图,是怎么回事呢?感兴趣的朋友们,可以来和小编一起探讨探讨哦!下面就让我们给大家介绍一下吧。一、开关电源工作原理—简介顾名思义,开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。二、开关电源工作原理—结构开关电源大致由主电路、开关电源控制电路、检测电路、辅助电源四大部份组成。1、主电路冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。2、控制电路一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。3、检测电路提供保护电路中正在运行中各种参数和各种仪表数据。4、辅助电源实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。三、开关电源工作原理—分类开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化;AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。小编所介绍的开关电源工作原理,可能大家还不是很懂,如果想要更加具体的了解开关电源原理图,请您继续关注。

开关电源原理

输入: 1. 浪涌电流保护;2.欠压,过压保护; 3. 防雷击保护输出: 1.过压保护; 2.短路保护; 3. 过流保护;4. 过温保护